If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+1811x+19800=0
a = 1; b = 1811; c = +19800;
Δ = b2-4ac
Δ = 18112-4·1·19800
Δ = 3200521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3200521}=1789$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1811)-1789}{2*1}=\frac{-3600}{2} =-1800 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1811)+1789}{2*1}=\frac{-22}{2} =-11 $
| -5-16x=11x | | x²+x=30 | | 43=8z+11 | | 6-(3x+3)=23-8x | | -7u/6=14 | | 5^(2x-1)=4^(3x+1) | | -120=-6+3(5x+2) | | 5/6u=-10 | | 3x+2x=6.5 | | -8u=-16/5 | | 36-4y=16 | | 390=8(-8n+5)-6n | | |x+5|+3=8 | | 9/4=x-3/25 | | 6(x+5)+6=6(x+6) | | x²+18x+80=0 | | 7x(5-3x)=0 | | 5(x-4)=5(x-7) | | 8x-3+8=5 | | 3(x+7)=3(7+x) | | 99=-3(4x-5) | | z+57=-3 | | 2(x+4)=2(8+x) | | n(n-5)=180 | | 2x-16=(-3x+11)/5 | | 2x+14+10=x+18 | | -13=-8-2n-1 | | 2a+16=16 | | (3y—1)²=0 | | -5(1-7x)=-285 | | 5=2w−3= | | 1.1q-5.5-3.4q=-3.3q-3.3 |